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EXECUTIVE SUMMARY

E.1 Introduction

This report details the findings oésearch project TRC1603, a two year stiadgevelop shear
wave velocity profiles dowio bedrock in the Mississippi Embaymearid to assess the cost
savings potential of performingS&MRA for design of Northeast Arkansas bridgBackground
on this project is provided itChapterl of this report. Chapter 2 discussedynamic site
characterizationvhich was conducted at 15 sitesNlortheast Arkansag€hapter 3 discusses data
processing of collected information frothe dynamicsite characterizatioefforts Chapter 4
discusses the results from the dynamic site characterizatioriseffiod the development of
UA_MEVM. Chapters discussesite-responsat the Monette bridge site includitgckground,
methodology, results, and implementation. Chaptsummarizes seismic bridge design using
SSGMRA results. Chapt@rdetails the cossavngs benefits of performing SSGMRA for a case
study ARDOT bridge in Monette, Arkansa€hapter8 is a summary of conclusionglectronic
appendices are also provided that contain supplemental information such as design calculations

E.2 Dynamic SiteCharacterization

Dynamic site characterization testing was conducted at 15 sites located throughout Northeast
Arkansas (sedigure E.1). These sites were chosen based first on the location of current or
potential ARDOT bridge job locations. However, if the area near or around the job site could not
accommodate testing (i.e. too urban, poor soil conditions, no landowner permission) or there was
another job site within close proximity, other locations were explored.t&mpt was also made
to distribute the sites across Northeast Arkansas as much possible to understand the distribution of
dynamic soil properties across in the region and aid in the development of the 3D velocity model
of the area. IMableE.1, the site ames and locations where testing was conducted are tabulated
along with the neare®tRDOT Job. From the sites tested, only the Mounds and Harrisburg sites
were not located in close proximity to ARDOT job. These sites were tested to provide a more
consigent distribution across thdortheastArkansas area.

Testing at the sites was conducted using a number of methods includiageRefraction,
active sourcéMASW, and passive sour®é¢AM . P-wave refraction was conducted at each of the
testing locations thelp locate the watdable(i.e., line of saturation) below the surface. Active
source MASW utilizing both Rayleigh and Love type surfaces waves was conducted at each site
using a sledgehammer source to understand the dynamic properties of the venyrfaear s
materials. The use of both Rayleigh and Love type surface waves increases the robustness of the
testing and helps ensure the correct mode assignments are made during the analysis process (Wood
et al.,2014). Atselect sites, Rayleigh wave MASW wasnducted using a Vibroseis source in
order to develop deeper active source dispersion data for comparison with passive source
dispersion data.

Passive source testing (MAM) was conducted at each of the sites to understand the dynamic
properties of the soiind rock layers at deeper depths. At each site, 2D circular arrays of 10
broadband seismometers with diameters of 50, 200, and 500 meters were used to measure
microtremors (i.e., background noise). At select sites, 1000 meter diameter circular arrays were



used for comparison with the smaller diameter arrays. For some sitesareay lof geophones

were used for passive surface wave testing in addition to the circular arrays. A typical testing site
layout is shown irFigureE.2. For each site, a common aanpoint for the circular arrays was
maintained where possible. TheanRve refraction, active MASW (Rayleigh and Love) using a
sledgehammer source, and passivariay testing were conducted near the center point of the
circular array where possible. Tegjiaround a common midpoint helps reduce the influence of
lateral variability on surface wave measurements and ensure each method is measuring similar solil
and rock properties. The active MASW testing using a Vibroseis source was often conducted away
from the center of the array due to site constraints (i.e., the vibroseis truck could not access
locations away from roads). Therefore, testing was often conducted on the nearest farm or public
road to the center of the array.

Table E.1: Dynamic site characterization testing locations in Northeast Arkansas and
correspondingARDOT job number

Site Name NearestARDOT Job Number Latitude Longitude

McDougal 100842 36.398583 | -90.388175
Mounds - 36.118611 | -90.313083
Fontaine 100841 36.017175 | -90.799475
Bay 100833/100657/100824x1/100824x2 35.761622 | -90.594256
Monette CA1001 35.885581 | -90.335186
Manila CA1002x1/ CA1002x2/ CA1002x3 35.852500 | -90.147089
Athelstan 100760x2 35.704214 | -90.217497
Amagon 050272x1/ 050272x2/ 050272x360272x4 | 35.567572 | -91.155928
Harrisburg - 35.565781 | -90.730197
Marked Tree | 100782 35.520050 | -90.435811
Wynne 110574 35.188317 | -90.789519
Earle CA0103x1/ CA0103x2 35.258642 | -90.422603
Palestine 110586 34.986725 | -90.911181
Greasy Corner| 110617 35.015908 | -90.403436
Aubrey 110616x1/ 110616x2 34.711003 | -90.943864
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Figure E.1: Dynamic site characterization testing locations in Northeast Arkansas.
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Figure E.2: A typical testing site setupll testing site maps are included in Appendix

E.3 Data Processing

Shear wave velocitprofiles were developeat each site in Northeast Arkansas. Processing
methods to develop thesyrofiles generally consist of developing experimental dispersion curves
andHVSRfrom raw data collected in the field at each site. This dispersion and HVSR information
is used to conduct a joint inversion to solve for thgndfile at each site. The five different data
processing steps used in this investigation are as follows:

1 Active-source surface wave processing.
Passivesource surface wave processing
Horizontatto-vertical spectral ratio processing.
Dispersion comparison.

Inversion.

= =4 4 A

Vi



E.4 Dynamic Site Characterization Results and 3D Velocity Model

Vs profiles were generated at fifteen sites in Northeast Arkamsiag the CUSVM geologic
boundaries to define a parameterizatiBedrock depth at sites in this study ranged from 250
meters to over 1100 meters with the shallow sites located towardediern portion of the
Embaymentnd the deeper sites located toward the Mississippi River cgagiterrside of the
state.The Vs profiles developed at the 15 sites showed a general consistency with depth. However,
there was some variation especially betw®@150 meters deep. These differences are believed
to be caused by differences in geologic layering at eachAsitelocity model for estimating the
deep (>30 meter) Mcharacterization within the Northeast Arkansas portion of the Mississippi
Embayment s created from the velocity profiles generated in the inversion. In total 155000 V
profiles consisting of the 1000 lowest misfit profiles from each site were utilized to provide a
robust data set for creating the model and to evaluate the uncertalmynmodel. An example of
the GUI for the UA_MEVM is provided in Figure E.3. A discussion is provided for performing
shallow (<30 meter) ¥Ycharacterization and combinirigis shallow \4 profile with the deepV/s
profiles generated in the model for SSGMRA.

Qutput Vs Profile: Qutput Vs Data:
0 T T T T T N R
. Top Depth (m) | Thickness (m) | Vs (m/s) Density (kg/m3)
30.0 2158 3T +- 24 1700
i | 51.9 276 433 +- 2T 1700
100 795 343 562 +- 10 1800
1142 439 579 +- 10 1800
1581 553 595 +/- 10 1200
2001 ] 213.4 708 611+ 11 1800
2842 947 531 +- 14 1800
379.0 126.8 648 +- 15 1500
300 - 1 505.7 172.9 886 +- 15 1900
5727 156.4 820 +/- 59 2100
835.1 NaM 2173 +-235 2300
£ 400 1
=
=
i)
0 500 - 7
Latitude:
s00 - 35.510209
Longitude
-90.413718
700 7
Solve
80O 7
QDD 1 1 1 1 1
0 500 1000 1500 2000 2500

Shear Wave Velocity, VS (m/s)

Figure E.3: An example of output data from the UA_MH velocity model
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E.5 Site-Response Analysis

A site SSGMRAwas conducted at the Monette bridge site as a case study on the use of
SSGMRA for bridge projects. Thate-responseanalysis results indicated that the seismic
accelerationsletermined by the AASHTO general procedure could be reduced by 33% from the
PGA (i.e., 0 second$o approximately 0.8exond$. From 0.8secondsto approximately 1.3
seconds the siteresponsespectrum transitions between the 2/3 AASHTO general procedure
response spectrum and the regular AASHTO general procedure response speotmins to
2.3 £condsthe spectrum is considered to be greater than the regular AASHTO general procedure
respone spectrumkigureE 4 highlightsimportant design acceleration values frim@SSGMRA.

Because the seismic accelerations were lowered in the short period range, and the Monette bridge
is considered to be short period, a esstings benefils expected.
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50%-50% Weighted | 1
Delineated Design | 1

-
0)]

Delineated seisriic 1

Design — winsEisaB — Bridge 7]
Design

Spectrum Forces |
SD1 > Seismic
Performance Zone
\

0.5%

Spectral Acceleration, Sa (g)

0.0 0.1 1 10
Period, T (s)

Figure E.4: Example updated design acceleration response spectrum determined from SSGMRA
with important values highlighted.
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E.6 Bridge Redesign based on SSGMRA

By using the reduced seismic accelerations in the short period range from SSGMRA, several
bridge components were reduced in size and length. It was determined that thpilimigigeould
be reduced from 24 almesin diameter to 18 ichesin diameter. The lengths of the intermediate
piles could be reduced by dd each, and the lengths of the bent 6 piles could be reduced by 23
fed each compared to the original design. Restrainer block sizes could also be reduced due to a
lower transvers force on the structure. Embankment reinforcement was reduced from 8 layers of
9000 Ib/ft Geogrid on 1dot vertical spacing to 4 Yeers of 2000 Ib/ft Geogrid onfdct vertical
spacing. Little benefit was observed in liquefaction analysis due to theosditions at the site.

E.7 CostSavings Analysis

From the finding®f a cost savings analysis for the Monette bridge progegtoss cost savings
of approximately $200,000 was estimated as a respkiddbrmingthe SSGMRAat the site For
future projets, this number is expected to vary from project to project as the original design details
such as the relationship obSto performance zone boundaries, location of liquefiable layers,
original factor of safety of liquefiable layers, embankment requeres) and site specific soil
conditions all play a role in the potential cost savings associated with conducting a SSGMRA.
Savings based on each SSGMRA benefit area are sholabieE.2 Further research is needed
to determine these spatial boundaries based on site classification, seismic hazard, soil conditions,
liquefaction hazard, embankment requirements, specific bridge details, and many other aspects of
a particular project.

To detemine the yearly cost savingshich could be possible, we assume an average savings
of $200,000 per bridge and assume an average of 20 bridges built per year in Arkansas seismic
regions (based oARDOT data from January 20€Becember 2014 for bridg@s Districts 1,2,5,6,
and 10). By these assumptionsrfprming SSGMRA could potentially result in a $4,000,000 per
year savings foARDOT.

Table E.2: Cost savings associated with each bridge design categorized by SSGMRA benefits.

Cost Savings for Monette Bridge
SSGMRA Benefits 24" Column Structurg 18" Column Structur
AASHTO Site Classification - -
AASHTO Seismic Performance Zdne - -

Liquefaction Analysis $0 $0
Bridge Design $49,489.65 $92,392.39
Embankment Design $114,600.00 $114,600.00
TOTAL $164,089.65 $206,992.39
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Chapter 1 of this report discusses the background and seismicity of Northeast Arkansas as well
as the significance of the Mississippi Embayment and\iMSZ. Background information on
dynamic site characterization methogeology of Northeast Arkansaste-responsanalysis, and
seismic bridge design are also discussed. Finally, an outline of the report is presented.

1.2 Problem Statement

Northeast Arkansas is located in the heart eNMSZ, an area of the U.S. that has some of
the highest design ground motions in the nation. This large seismic hazard is the result of past large
magnitude earthquakes occurring within the NMSZ, notdeignre1.1 In addition to the high
seismic threat inNortheast Arkansasthe region is located within thapper Mississippi
EmbaymentThis geologic area, illustratedkiigurel1.2, is characterized by deep, unconsolidated
sedimentary deposits, which form a plunging syncline with an axis that closely tracasutse
of the Mississippi River(Mento et al., 1989. The thickness of these deposits range from
approximately 477 m at New Madrid, Missouri to 987 m below Memphis, Tenn@&sedrsdale
and TenBrink 2000, Rosenblatial.,2010.

These two regional emacteristics significantly increase the seismic design costs of bridge
abutments, deep foundatiora)d ERSn Northeast ArkansasCurrently, theARDOT typically
uses the general procedure outlined in A®SHTO LRFD Bridge Design Specifications to
estimate the seismic demand for highway bridges. Although this methodology usually provides a
conservative design, the AASHTO LRFD specifications clearly warn thatglonad structures
may be oveesigned at a significa cost, and longeriod structures may be unetbgsigned at a
significant risk. This is because the amplification/deamplification implied by immense sediment
thicknesses ifar differentthan that implied by the AASHTO site classification considering only
the top 30 m of soil (Malekmohammadi and Pezeshk 20h&yefore, to better estimate the design
ground motions at bridge sites and ensure safe and cost efficient designs, AASHTO recommends
conducting a sitspecific ground motion response analySSGMRA) for areas such as the
Mississippi EmbaymentAASHTO specifications directly mention that sites with deep, soft
deposits, like those in thilississippi Embaymentare locations where SSGMRA should be
performed. Recognizing the value these types of geiic analysis can add when complex
conditions exist, AASHTO allows seismic design forces obtained from general, code based
procedures to be reduced by up to 33% if the SSGMRA indicates this is appropriagt.al.px
(2012) concluded that this reducticould be achieved for short period ranfek.0 secondsat
bridge sites ifNortheast Arkansasvhich is where the natural period of mb&trtheast Arkansas
bridges designed b&RDOT fall.
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Figure 1.2: Idealized cross section of the Mississippi Embayment (Hashash and Park 2001).

One of the primary inputs into the SSGMRA alear wave velocity (¥ profilesat the site
down to bedrock. Although this can be relatively straight forward for some sites, the Mississippi
Embaymentonsists of very deep sediments to a great depth (>1000 m in some locations) before
bedrock is encouared. These Mprofiles to bedrock have been shown to be critical to properly
estimate the ground motions for a site (Cramenl., 2004; Hashash and Park 2001). Many
researchers, particularly Ret al.,(2001) and Rosenblad and Li (2009), have attedhjaigrofile
soils in the MississipgtmbaymentHowever, they were only successful at developingrefiles
to less than 300 m in depth, which would not reach bedrock in mudbrdieast Arkansag o
insure accurate estimates of the ground motion demigimy SSGMRA, a methodology to
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measure Yto bedrock in the Mississippi Embayment needs to be established and a set of V
profiles in the Mississippi Embayment need to be collected to further understand the subsurface
condition in theEmbayment

Other regarch has been conducted to understand the implications of conduietirggponse
at NMSZ bridge sites. Rogeet al., (2007 performedsiteresponseanalyses at three Missouri
River highway bridge sites using artificial acceleration time histories, which predicted site
amplification between six and nine times for a large magnitude earthquake. They also concluded
that serious foundation failure couldaur for earthquakes over\.5 to 6.6 Rogerset al.,2007).
However, the bedrock depths for these bridge sites are between 30 m and 40 m, which is much
shallower than bedrock depths at bridge sites within the Mississippi Embayment. The deep
MississippiEmbaymensedimentary deposits have a very large impact on the transfer of bedrock
motions to surface ground motions during a large earthqird@ero and Rix 2001, Hashash
al., 2010. The thick sedimentary depositsNiortheast Arkansaare expectetb damp out high
frequency seismic waves, posing little threat for amplification like that seen in the Missouri River
Flood Plain(Coxet al.,2012. Liu and Stephensai2004) conductedsiteresponsdor two bridge
sites in the Missouri Bootheel where sulface soils are more than 600 m thick. They
demonstrated the importance of using both EQL and NL analyses and the effects of deep soil
deposits that cause period migration from short to long periods. This resulted in a broad short
period range whersiteresponseredicted accelerations less than typical design accelerations.
OtherMississippi Embaymersite-responseesearch also predicts deamplificaiton of short period
motions for sites in western Tennessee and Kentucky due to deep unconsolidated s@tfiamgnts
et al., 1996, Harriset al.,1994).

Ketchumet al., (2004 demonstrated the potential cost savings ofdoeting SSGMRA for
posttensioned boxirder anddgirder bridges, which the California Department of Transportation
(CalTrans) typically prefers. Their results show that for typically low overhead bridges, a 5% cost
savings can be obtained for each 10%uation in PGA above a baseline of 0.3 g to 0.4 g. Since
AASHTO (2014 allows up to a 33% reduction in the simplified code based design response
spectra (including the PGA), based on these results, conducting an SSGMRA could result in a cost
reduction onhe order of 15% of the total cost of the bridge. This cost savings would be significant
when considered for Arkansas bridges within the Mississippi EmbayiFigote 1.3 illustrates
Arkansas state owned bridgeithin AASHTO seismic performance zones wheASHTO site
class D is assumed. Cost savings associated with conducting SSGMRA would be even more
significant when the AASHTO seismic performance zone could be lowered from IV or Ill to Il or
| where design requirements are less stringent.



Figure 1.3: Arkansas State owned bridges within respective AASHTO Seismic Performance
Zones assuming site classification D. The Monette bridge used for the study is highlighted.

1.3 Dynamic Site Characterization Testing

Methods to olin the insitu small strain Ymeasurements for a site typically fall into one of
two categories: invasive and nowvasive. Invasive methods such as Crosshole, Downhete, P
logging, andSCPTmeasure the layering and &f a site directly by placing sems or both sensors
and source below the surface in a borehole or CPT cans.dfectly measured by dividing the
known distance between source and receiver by the measured travel time between source and
receiver. These methods are proven to providerateresults in a variety of conditions. However,
the cost of drilling boreholes and conducting tests is often far more expensive thanasiwve
methods. This is especially true for sites in the Mississippi Embayment, which would require
boreholes or amdings to 1000 m in some cases.

Noninvasive methods have the advantage of only requiring sensors and source to be placed
on the ground surface. This often significantly reduces the cost of develogpnafiés for deeper
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